Discretization for Naive-Bayes Learning

نویسنده

  • Ying Yang
چکیده

viii

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Why Discretization Works for Naive-Bayes Classifiers

We investigate why discretization is effective in naive-Bayes learning. We prove a theorem that identifies particular conditions under which discretization will result in naiveBayes classifiers delivering the same probability estimates as would be obtained if the correct probability density functions were employed. We discuss the factors that might affect naive-Bayes classification error under ...

متن کامل

Weighted Proportional k-Interval Discretization for Naive-Bayes Classifiers

The use of different discretization techniques can be expected to affect the classification bias and variance of naive-Bayes classifiers. We call such an effect discretization bias and variance. Proportional kinterval discretization (PKID) tunes discretization bias and variance by adjusting discretized interval size and number proportional to the number of training instances. Theoretical analys...

متن کامل

Augmented Naive Bayesian Classifiers for Mixed-Mode Data

Conventional Bayesian networks often require discretization of continuous variables prior to learning. It is important to investigate Bayesian networks allowing mixed-mode data, in order to better represent data distributions as well as to avoid the overfitting problem. However, this attempt imposes potential restrictions to a network construction algorithm, since certain dependency has not bee...

متن کامل

Discretizing Continuous Features for Naive Bayes and C4.5 Classifiers

In this work, popular discretization techniques for continuous features in data sets are surveyed, and a new one based on equal width binning and error minimization is introduced. This discretization technique is implemented for the UCI Machine Learning Repository [7] dataset, Adult database and tested on two classifiers from WEKA tool [6], NaiveBayes and J48. Relative performance changes for t...

متن کامل

Dynamic Discretization of Continuous Attributes

Discretization of continuous attributes is an important task for certain types of machine learning algorithms. Bayesian approaches, for instance, require assumptions about data distributions. Decision Trees, on the other hand, require sorting operations to deal with continuous attributes , which largely increase learning times. This paper presents a new method of discretization, whose main char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003